

Syntheses, crystal structures, thermal stabilities and luminescence of six M(II)-hydroxyphosphonoacetate materials

Ruibiao Fu*, Shengmin Hu, Xintao Wu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China

ARTICLE INFO

Article history:

Received 9 December 2010

Received in revised form

17 February 2011

Accepted 20 February 2011

Available online 26 February 2011

Keywords:

Phosphonate

Syntheses

Structure

Luminescence

ABSTRACT

Hydrothermal reactions of Zn^{II}, Ba^{II} or Co^{II} ion with 2-hydroxyphosphonoacetic acid (H₃L) afforded six metal phosphonates, namely, [Zn₅(O₃PCH(OH)CO₂)₄(C₆H₉N₂)₂] (1), [(C₄H₁₂N₂)Zn₅(O₃PCH(OH)CO₂)₄(H₂O)₂] (2), [(C₃H₁₂N₂)_{0.5}Zn₅(HO₃PCH(OH)CO₂)(O₃PCH(OH)CO₂)₃(H₂O)₂] · 0.75H₂O (3), [BaZn₂(O₃PCH(OH)CO₂)₂] (4), [Ba(HO₃PCH(OH)CO₂)] (5) and [(NH₄)₂Co₇(HO₃PCH(OH)CO₂)₆(HPO₄)₂(H₂O)₆] · 4H₂O (6). In 1, zinc tetrahedra ([ZnO₄]) and octahedra ([ZnO₅N], [ZnO₆]) are bridged by 2-hydroxyphosphonoacetate with penta- and hexadendate modes into a hybrid layer, which is further pillared by the 3-picolylamines to form a 3D structure through Zn–N bonds and hydrogen bondings. Both 2 and 3 are 3D framework encapsulating piperazine and 1,2-propanediamine cations, respectively. In solids 4–6, the cross-linkages of [ZnO₄], [BaO₁₀] and [CoO₆] polyhedral with 2-hydroxyphosphonoacetate form 3D frameworks. Solids 3 and 4 behave thermally stable up to 250 and 300 °C under air atmosphere, respectively. It is interesting that the peak emission of solid 3 displays a 10 nm red-shift after simple heat-treatment.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Metal phosphonates have attracted considerable attention for their structural diversities and applications as ion-exchangers, catalyst, LB Film, porous materials, small molecular sensors and nonlinear optics [1–3]. During the past five years, many metal phosphonates such as molybdochosphonate clusters [4], “breathing” in adsorbate-responsive calcium tetraphosphonates [5], metal ferrocenylphosphonates with strong third-order nonlinear optical self-focusing effects [6], homochiral phosphonates displaying selective adsorption capacities [7,8] and Fe(III) phosphonate cages [9], have been emerged. In particular, phosphonic acids with additional groups have been used to synthesize interesting solids, including M_x[Fe(O₂CCH₂)₂NCH₂PO₃]₆ · nH₂O with maple leaf lattice, as well as Co(2-pmp)(H₂O)₂ showing reversible changes of structures and magnetic behaviors upon the dehydration-hydration process [10–16]. In this regard, 2-hydroxyphosphonoacetic acid (H₃L) features a close connection of PO₃H₂, COOH and OH via a carbon atom and adopts 14 modes to afford many coordination polymers, such as a zinc framework with nonlinear optical activity and high thermal stability, 3D heterometal phosphonates displaying the irreversible transformation of luminescent color, pillared manganese phosphonate with metamagnetism and zinc phosphonate exhibiting tunable

emissions [17–30]. To expand our studies in this respect, six new metal phosphonates: [Zn₅(O₃PCH(OH)CO₂)₄(C₆H₉N₂)₂] (1), [(C₄H₁₂N₂)Zn₅(O₃PCH(OH)CO₂)₄(H₂O)₂] (2), [(C₃H₁₂N₂)_{0.5}Zn₅(HO₃PCH(OH)CO₂)(O₃PCH(OH)CO₂)₃(H₂O)₂] · 0.75H₂O (3), [BaZn₂(O₃PCH(OH)CO₂)₂] (4), [Ba(HO₃PCH(OH)CO₂)] (5) and [(NH₄)₂Co₇(HO₃PCH(OH)CO₂)₆(HPO₄)₂(H₂O)₆] · 4H₂O (6), have been hydrothermally synthesized and characterized. 2-Hydroxyphosphonoacetate exhibits five new coordination modes through six active oxygen atoms.

2. Experimental

2.1. Materials and instrumentation

H₃L solution (wt% = 48.0%) and other chemicals were purchased from commercial sources without further purification. Elemental analyses were carried out with a Vario EL III element analyzer. Infrared spectra were obtained on a Nicolet Magna 750 FT-IR spectrometer. Fluorescent properties were investigated with F-7000 FL spectrophotometer at room temperature. Thermo-gravimetric analysis (TGA) was performed on a NETZSCH STA449C under air gas flow with a heating rate of 10 °C min⁻¹ for 3 and nitrogen gas flow with a heating rate of 15 °C min⁻¹ for 6. Powder XRD patterns were acquired on a DMAX-2500 diffractometer using CuK α radiation (λ = 1.54178 Å) under ambient environment. Single crystals of 1–5 were obtained in a Parr

* Corresponding authors. Fax: +86 591 83714946.

E-mail address: wxt@fjirs.ac.cn (X. Wu).

Teflon-lined autoclave (23 mL) as a homogenous phase based on respective powder XRD patterns.

2.2. Synthesis

[Zn₅(O₃PCH(OH)CO₂)₄(C₆H₉N₂)₂] (1). A mixture of Zn(CH₃COO)₂·2H₂O (0.2193 g, 0.9991 mmol), H₃L solution (0.5 mL, 2 mmol) and 3-picolyamine (0.7 mL, 6.9 mmol) in 10.0 mL distilled water with pH value adjusted to 3.65, was heated at 160 °C for 120 h. Yield: 0.0500 g (21%). Anal. Calc. for C₂₀H₂₆N₄O₂₄P₄Zn₅ (1): C 20.76, H 2.26, N 4.84%. Found: C 20.54, H 2.10, N 4.70%. IR (KBr pellet, cm⁻¹): 3378w(v_{O-H}), 3196w(v_{N-H}), 3072w(v_{N-H}), 2932w(v_{C-H}), 2905w(v_{C-H}), 1604vs(v_{asCO}), 1577vs(v_{asCO}), 1501w, 1485w, 1422m(δ_{C-H}), 1393w, 1367w, 1201m(v_{P=O}), 1171m, 1142s(v_{P-O}), 1100s(v_{P-O}), 1059m, 1047m, 992m(v_{P-O}), 972m, 897w, 828w, 708w, 672w, 649w, 516m.

[(C₄H₁₂N₂)Zn₅(O₃PCH(OH)CO₂)₄(H₂O)₂] (2). A mixture of Zn(CH₃COO)₂·2H₂O (0.2166 g, 0.9871 mmol), H₃L solution (0.6 mL, 2.4 mmol) and C₄H₁₀N₂·6H₂O (1.0783 g, 5.5517 mmol) in 10.0 mL distilled water with pH value adjusted to 3.74, was heated at 190 °C for 120 h. Yield: 0.0019 g (0.9%). Anal. Calc. for C₁₂H₂₄N₂O₂₆P₄Zn₅ (2): C 13.56, H 2.28, N 2.64%. Found: C 13.54, H 2.14, N 2.41%. IR (KBr pellet, cm⁻¹): 3435m(v_{O-H}), 3075w, 2966w(v_{C-H}), 2804w(v_{C-H}), 1583s(v_{asCO}), 1385w, 1327w, 1261w, 1202m, 1174m(v_{P=O}), 1098vs(v_{P-O}), 1072m(v_{P-O}), 996m(v_{P-O}), 832w, 799w, 656w, 637m, 604w.

[(C₃H₁₂N₂)_{0.5}Zn₅(HO₃PCH(OH)CO₂)(O₃PCH(OH)CO₂)₃(H₂O)₂·0.75H₂O (3). A mixture of Zn(CH₃COO)₂·2H₂O (0.2193 g, 0.9991 mmol), H₃L solution (0.8 mL, 3.2 mmol) and 1,2-propanediamine (0.9 mL, 10.5 mmol) in 10.0 mL distilled water with pH value adjusted to 3.67, was heated at 150 °C for 120 h. Yield: 0.1826 g (89%). Anal. Calc. for C_{9.5}H_{20.5}NO_{26.75}P₄Zn₅ (3): C 11.10, H 2.01, N 1.36%. Found: C 11.15, H 2.17, N 1.44%. IR (KBr pellet, cm⁻¹): 3453s(v_{O-H}), 3109m(v_{N-H}), 2918w(v_{C-H}), 2827w, 2735w, 2663w, 1587vs(v_{asCO}), 1435m(δ_{C-H}), 1331w, 1296w, 1168m(v_{P=O}), 1187m, 1095vs(v_{P-O}), 1071m(v_{P-O}), 991s(v_{P-O}), 950w, 837m, 780m, 654m, 598m, 515m, 489m.

Table 1
Crystallographic data for compounds **1–6**.

Compound	1	2	3	4	5	6
Formula	C ₂₀ H ₂₆ N ₄ O ₂₄ P ₄ Zn ₅	C ₁₂ H ₂₄ N ₂ O ₂₆ P ₄ Zn ₅	C _{9.5} H _{20.5} NO _{26.75} P ₄ Zn ₅	C ₄ H ₄ O ₁₂ P ₂ BaZn ₂	C ₂ H ₃ O ₆ PBa	C ₁₂ H ₄₈ N ₂ O ₅₄ P ₈ Co ₇
FW	1157.18	1063.06	1027.50	574.09	291.35	1744.79
Space group	P-1	P-1	P-1	Pbca	P-1	P2(1)/n
a/Å	5.2697(15)	5.5512(4)	10.230(8)	9.708(4)	4.764(4)	9.480(2)
b/Å	11.333(4)	9.7858(5)	11.059(8)	8.830(3)	7.471(6)	11.303(3)
c/Å	14.035(5)	12.9382(10)	13.818(10)	12.755(5)	8.389(7)	24.597(6)
α/°	92.279(10)	86.877(10)	69.01(3)	90	83.67(2)	90
β/°	100.779(7)	87.809(10)	78.31(3)	90	86.22(2)	95.747(4)
γ/°	96.214(8)	76.451(9)	72.15(2)	90	78.068(17)	90
V/Å ³	817.0(4)	682.03(8)	1381.7(18)	1093.3(7)	290.0(4)	2622.4(11)
Z	1	1	2	4	2	2
T/K	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
D _{calcd} /g cm ⁻³	2.352	2.588	2.470	3.488	3.336	2.210
μ/mm ⁻¹	3.922	4.689	4.625	8.279	7.089	2.541
Reflections collected	6306	5259	10,308	7458	2196	19,833
Independent reflections	3488	2901	5859	1249	1224	5997
Observed reflections [I > 2(I)]	3125	2675	3855	1171	1168	4996
Parameters refined	263	274	442	105	103	376
Maximum/minimum Δρ ^a (e Å ⁻³)	1.407/−0.527	0.592/−0.463	2.581/−0.870	0.753/−0.953	1.589/−2.184	2.241/−0.759
GOF on F ²	1.057	1.084	1.118	1.123	1.052	1.052
R _{int}	0.0193	0.0161	0.0238	0.0306	0.0247	0.0387
R1 ^a [I > 2σ(I)]	0.0319	0.0273	0.0502	0.0208	0.0297	0.0539
wR2 ^b [all data]	0.0748	0.0607	0.2016	0.0584	0.0737	0.1581

^a R1 = $\sum(|F_o| - |F_c|)/\sum|F_o|$.

^b wR2 = $\{\sum w[(F_o^2 - F_c^2)]/\sum w[(F_o^2)]\}^{0.5}$.

[BaZn₂(O₃PCH(OH)CO₂)₂] (4). A mixture of Zn(CH₃COO)₂·2H₂O (0.2266 g, 1.032 mmol), Ba(NO₃)₂ (0.1544 g, 0.5896 mmol), 1,2-diaminocyclohexane (0.5 mL, 4 mmol) and H₃L solution (0.65 mL, 2.7 mmol) in 8.0 mL distilled water with pH value adjusted to 2.46, was heated at 160 °C for 120 h. Yield: 0.27 g (45%). Anal. Calc. for C₄H₄O₁₂P₂BaZn₂ (4): C 8.40, H 0.71%. Found: C 8.21, H 0.58%. IR (KBr pellet, cm⁻¹): 3412m, 2951m(v_{C-H}), 2855w(v_{C-H}), 2340w, 1633m, 1618m(v_{asCO}), 1396m, 1386m, 1325m, 1191m(v_{P=O}), 1167m(v_{P-O}), 1092s(v_{P-O}), 999m(v_{P-O}), 931w, 842m, 766w, 666w, 618m, 550m, 522w, 484w.

[Ba(HO₃PCH(OH)CO₂)] (5). A mixture of Ba(OH)₂·8H₂O (0.3103 g, 0.9836 mmol) and H₃L solution (0.65 mL, 2.7 mmol) in 8.0 mL distilled water with pH value adjusted to 1.91, was heated at 170 °C for 120 h. Yield: 0.0970 g (34%). Anal. Calc. for C₂H₃O₆PBa (5): C 8.25, H 1.04%. Found: C 7.73, H 0.93%. IR (KBr pellet, cm⁻¹): 3273m(v_{O-H}), 2965w(v_{C-H}), 2809w(v_{C-H}), 2345w, 1613s(v_{asCO}), 1445w, 1384m, 1241m, 1164m(v_{P=O}), 1047s(v_{P-O}), 947m(v_{P-O}), 926m(v_{P-O}), 835w, 762m, 621m, 574m, 528m, 474m.

[(NH₄)₂Co₇(HO₃PCH(OH)CO₂)₆(HPO₄)₂(H₂O)₆] (6). A 25 mL PTEE beaker with Co(CH₃COO)₂·4H₂O (0.1314 g, 0.5276 mmol), H₃L solution (0.5 mL, 2.1 mmol), 1.0 mL ammonia solution (28%), 1.0 mL triethylamine and 4.0 mL distilled water, was sealed into a Parr Teflon-lined autoclave (150 mL) containing 3 mL H₃L solution and 3 mL distilled water, then heated at 120 °C for 96 h. After slow cooling to room temperature, red crystals were obtained as a homogenous phase based on powder XRD patterns. Yield: 0.0468 g (35%). Anal. Calc. for C₁₂H₄₈N₂O₅₄P₈Co₇ (6): C 8.26, H 2.77, N 1.61%. Found: C 8.47, H 3.34, N 2.16%. IR (KBr pellet, cm⁻¹): 3274s(v_{O-H}), 1618s(v_{asCO}), 1444m, 1399m, 1279m, 1223m, 1197m(v_{P=O}), 1075s(v_{P-O}), 1049m(v_{P-O}), 975m(v_{P-O}), 816m, 623m, 537m.

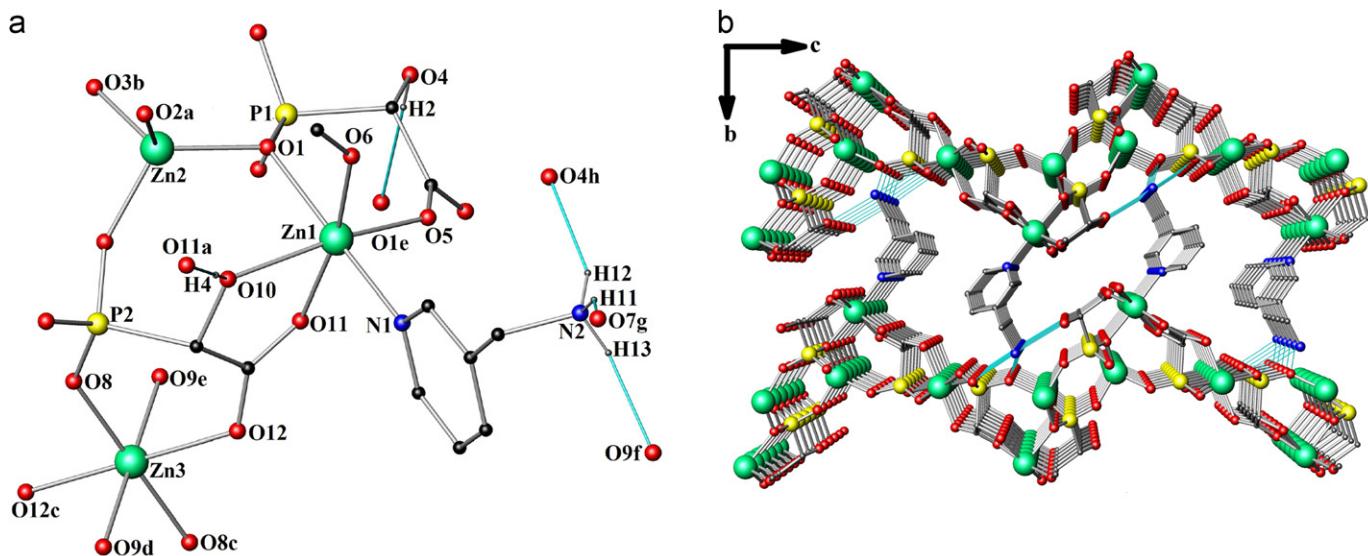
2.3. X-ray crystallography

X-ray data for **1–6** were collected on a Rigaku Mercury CCD/AFC diffractometer using graphite-monochromated Mo K α radiation (λ (Mo-K α) = 0.71073 Å). Data were reduced with Crystal-Clear v1.3. Their structures were solved by direct methods and

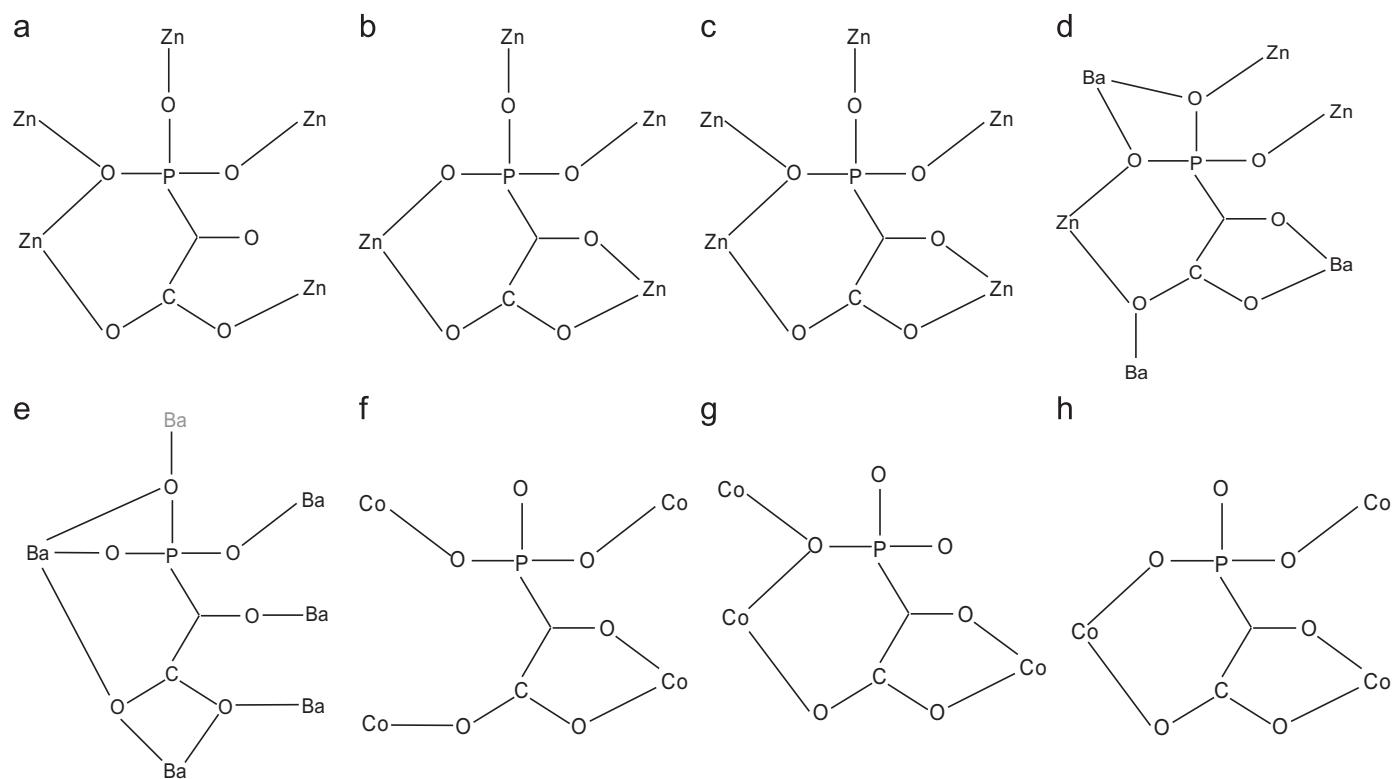
Table 2Selected bond lengths (Å) for compounds **1–6**.

1					
Zn(1)–N(1)	2.159(3)	Zn(2)–O(1)	1.986(2)	Zn(3)–O(8) ^c	2.032(2)
Zn(1)–O(1)	2.238(2)	Zn(2)–O(2) ^a	1.909(2)	Zn(3)–O(9) ^d	2.123(2)
Zn(1)–O(5)	2.051(3)	Zn(2)–O(3) ^b	1.964(2)	Zn(3)–O(9) ^e	2.123(2)
Zn(1)–O(6)	2.030(2)	Zn(2)–O(7)	1.929(2)	Zn(3)–O(12)	2.145(2)
Zn(1)–O(10)	2.178(2)	Zn(3)–O(8)	2.032(2)	Zn(3)–O(12) ^c	2.145(2)
Zn(1)–O(11)	2.055(2)				
2					
Zn(1)–O(1)	1.9644(19)	Zn(2)–O(2) ^a	2.039(2)	Zn(3)–O(6)	2.0139(19)
Zn(1)–O(9)	1.916(2)	Zn(2)–O(3) ^b	2.159(2)	Zn(3)–O(7) ^c	2.0305(19)
Zn(1)–O(10)	2.127(2)	Zn(2)–O(5)	2.055(2)	Zn(3)–O(8)	2.0451(18)
Zn(1)–O(12)	2.1238(19)	Zn(2)–O(5) ^a	2.086(2)	Zn(3)–O(8) ^d	2.0372(17)
Zn(1)–O(13)	2.030(2)	Zn(3)–O(4)	2.416(2)	Zn(3)–O(11)	2.1474(18)
Zn(2)–O(2)	1.994(2)				
3					
Zn(1)–O(1)	2.054(4)	Zn(2)–O(8) ^b	2.051(4)	Zn(4)–O(10)	2.106(5)
Zn(1)–O(2) ^a	2.022(4)	Zn(2)–O(22)	2.301(5)	Zn(4)–O(12)	2.129(4)
Zn(1)–O(8) ^b	2.034(4)	Zn(2)–O(23)	2.030(4)	Zn(4)–O(19)	1.937(5)
Zn(1)–O(11)	2.188(4)	Zn(3)–O(3)	1.926(5)	Zn(4)–O(26)	2.020(5)
Zn(1)–O(16)	2.313(5)	Zn(3)–O(4)	2.102(5)	Zn(5)–O(15)	2.061(5)
Zn(1)–O(17)	2.015(4)	Zn(3)–O(5)	2.141(4)	Zn(5)–O(18)	2.045(5)
Zn(2)–O(1)	2.038(4)	Zn(3)–O(13)	1.954(4)	Zn(5)–O(20) ^d	2.053(5)
Zn(2)–O(6)	2.186(4)	Zn(3)–O(25)	2.006(5)	Zn(5)–O(21)	1.992(5)
Zn(2)–O(7)	2.021(4)	Zn(4)–O(9) ^c	1.923(5)	Zn(5)–O(24)	2.082(5)
4					
Zn(1)–O(1) ^e	1.9736(18)	Ba(1)–O(1) ^c	2.900(2)	Ba(1)–O(5)	3.055(2)
Zn(1)–O(2) ^a	1.894(2)	Ba(1)–O(3)	3.014(2)	Ba(1)–O(5) ^c	3.055(2)
Zn(1)–O(3) ^d	1.9497(19)	Ba(1)–O(3) ^c	3.014(2)	Ba(1)–O(6) ^a	2.792(2)
Zn(1)–O(5)	2.023(2)	Ba(1)–O(4) ^a	2.726(2)	Ba(1)–O(6) ^b	2.792(2)
Ba(1)–O(1)	2.900(2)	Ba(1)–O(4) ^b	2.726(2)		
5					
Ba(1)–O(1) ^b	2.784(4)	Ba(1)–O(3) ^f	3.156(4)	Ba(1)–O(5) ^e	3.154(4)
Ba(1)–O(1) ^c	3.100(4)	Ba(1)–O(4)	2.804(4)	Ba(1)–O(6)	2.791(4)
Ba(1)–O(2) ^a	2.687(4)	Ba(1)–O(5)	2.776(4)	Ba(1)–O(6) ^d	2.863(4)
Ba(1)–O(2) ^c	2.843(4)				
6					
Co(1)–O(1)	2.063(3)	Co(2)–O(6)	2.079(3)	Co(3)–O(23)	2.172(4)
Co(1)–O(5)	2.120(3)	Co(2)–O(7)	2.094(3)	Co(3)–O(24)	2.108(4)
Co(1)–O(7)	2.193(3)	Co(2)–O(12)	2.084(3)	Co(4)–O(14)	1.998(4)
Co(1)–O(10)	2.150(3)	Co(2)–O(13)	2.069(4)	Co(4)–O(14) ^b	1.998(4)
Co(1)–O(11)	2.080(4)	Co(3)–O(2)	2.016(3)	Co(4)–O(18)	2.134(4)
Co(1)–O(20) ^a	2.017(4)	Co(3)–O(16)	2.145(4)	Co(4)–O(18) ^b	2.134(4)
Co(2)–O(1)	2.095(3)	Co(3)–O(17)	2.089(4)	Co(4)–O(25)	2.189(6)
Co(2)–O(4)	2.107(3)	Co(3)–O(19)	2.076(4)	Co(4)–O(25) ^b	2.189(6)

Symmetry codes for **1**: ^a 1+x, y, z, ^b 1-x, -y, 1-z, ^c -x, -y, -z, ^d 1-x, -y, -z, ^e -1+x, y, z, for **2**: ^a 1-x, -y, 1-z, ^b -x, -y, 1-z, ^c 1-x, -y, -z, ^d -x, -y, -z, for **3**: ^a -x, -y, -z, ^b -x, -y-1, -z, ^c -x, -y, -z-1, ^d -x, -y+1, -z-1, for **4**: ^a x, 1/2-y, -1/2+z, ^b -x, -1/2+y, -1/2-z, ^c -x, -y, -1-z, ^d -1/2+x, 1/2-y, -1-z, ^e -1/2-x, -y, -1/2+z, for **5**: ^a x, -1+y, z, ^b -x, -y, -z, ^c 1+x, -1+y, z, ^d 1-x, -1-y, -1-z, ^e -1+x, y, z, ^f 1-x, -y, -z, for **6**: ^a 1/2-x, -1/2+y, 1/2-z, ^b -x, 1-y, 1-z.


refined by full-matrix least-squares techniques on F^2 using SHELXTL-97 [31]. All non-hydrogen atoms were treated anisotropically. Zn2 in **2** and Zn5 in **3** disorder over two sites. H1, H2 and H4–H13 in **1**, H1–H4 in **3** and H1–H7 in **6** were generated geometrically. While the positions of H3 in **1** and hydrogen atoms in **2**, **4** and **5**, were located from difference Fourier map and assigned with fixed isotropic thermal parameter. No attempts were performed to locate other hydrogen atoms in **3** and **6**. Crystallographic data and selected bond lengths for **1–6** are summarized in Tables 1 and 2, respectively. CCDC 798790–798795 for **1–6**, respectively.

3. Results and discussion

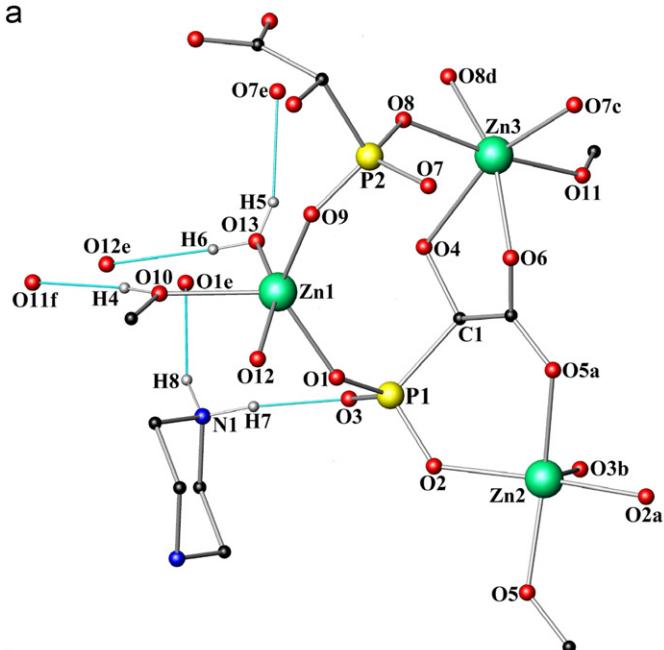
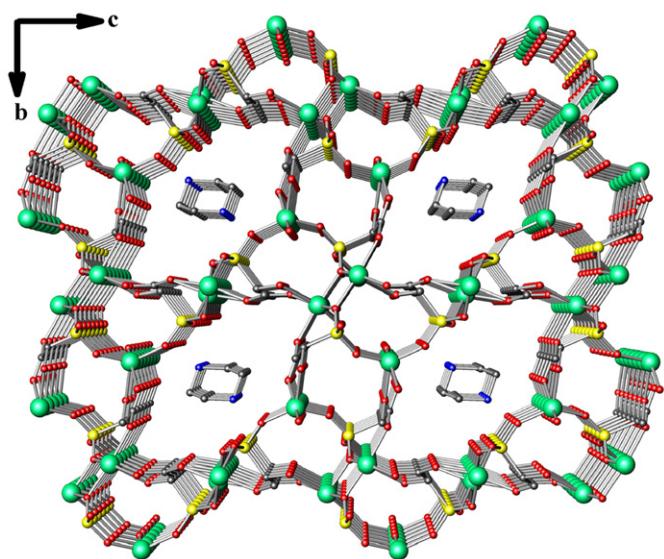

3.1. Structural descriptions

The asymmetric unit of **1** consists of three Zn(II) ions, two L^{3-} groups and one 3-picolyamine cation (Fig. 1). Zn1, Zn2 and Zn3 are in distorted $[ZnO_5N]$ octahedral, $[ZnO_4]$ tetrahedral and

$[ZnO_6]$ octahedral coordination geometries, respectively. Two L^{3-} groups are chelated to Zn1 via carboxylate groups (O5, O11) along with phosphonate (O1) or hydroxyl (O10) groups to form Zn–O–C–C–P–O or Zn–O–C–O rings. As a result, the bond angle of O10–Zn1–O11 is only $76.18(9)^\circ$, which deviates from 90° for octahedral angle. This is similar to those in reported compounds [26,28,30]. The other two sites of $[Zn(1)O_5N]$ octahedron are occupied by a phosphonate oxygen atom (O6) from the third L^{3-} group and a nitrogen donor from the 3-picolyamine cation. Each L^{3-} group interacts with Zn2 through one phosphonate oxygen atom. The basal plane of $[Zn(3)O_6]$ octahedron is defined by two equivalent L^{3-} groups through two Zn–O–C–C–P–O chelating rings, while the apical sites are occupied by two phosphonate oxygen atoms (O9d, O9e) from another two equivalent L^{3-} groups. 2-Hydroxyphosphonoacetate displays a new $\mu_5:\eta_1:\eta_1:\eta_2:\eta_1:\eta_1$ pentadentate and a known $\mu_4:\eta_1:\eta_1:\eta_1:\eta_1:\eta_1$ hexadentate modes (Scheme 1a,b). Thus, L^{3-} groups bridge zinc tetrahedra ($[ZnO_4]$) and octahedra ($[ZnO_5N]$, $[ZnO_6]$) to form a hybrid layer. The layers are further pillared by 3-picolyamine cations through Zn–O bonds and hydrogen bondings into 3D

Fig. 1. Ball-stick views of coordinated environment of Zn ions (a) and 3D structure (b) in **1**. Blue-green lines represent hydrogen bondings. Unrelated hydrogen atoms are omitted for clarity. Symmetry codes: $a1+x, y, z$; $b1-x, -y, 1-z$; $c-x, -y, -z$; $d1-x, -y, -z$; $e-1+x, y, z$; $fx, y+1, z$; $gx+1, y+1, z$; $h1-x, 1-y, 1-z$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Scheme 1



structure (Table 3) [32–43]. It is worth to note the 3-picollylamine cation serves as not only a second ligand, but also a structure-directing agent.

The asymmetric unit of **2** contains three Zn(II) ions, two L^{3-} groups, one coordinated water molecule and half piperazine cation (Fig. 2). The τ value (0.52) reveals that the geometry around Zn1 is nearly in between square pyramidal and trigonal-bipyramidal geometry [44]. Beside a Zn–O–C–C–O chelating ring and the coordinated water molecule, the Zn1 geometry is also defined by two phosphonate oxygen atom (O1, O9) from

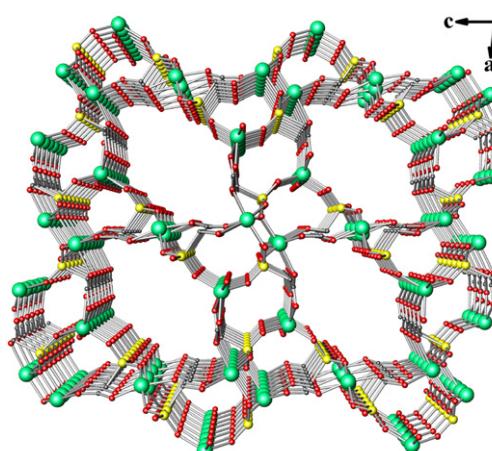
another two L^{3-} groups. Zn2 is in a $[ZnO_5]$ square-pyramidal coordination geometry with τ value of 0.007. The basal plane of $[Zn(2)O_5]$ square-pyramid is surrounded by two equivalent L^{3-} groups through two Zn–O–C–C–P–O chelating rings, which is similar to that of Zn3 in **1**. The apical site is occupied by a phosphonate oxygen atom (O3b) from the third L^{3-} group. Two L^{3-} groups are chelated to Zn3 via carboxylate groups (O11, O6) along with phosphonate (O8d) or hydroxyl (O4) groups to form Zn–O–C–C–P–O or Zn–O–C–C–O rings. As a result, the bond angle of O4–Zn3–O6 is only $70.31(7)^\circ$, which is obvious smaller than

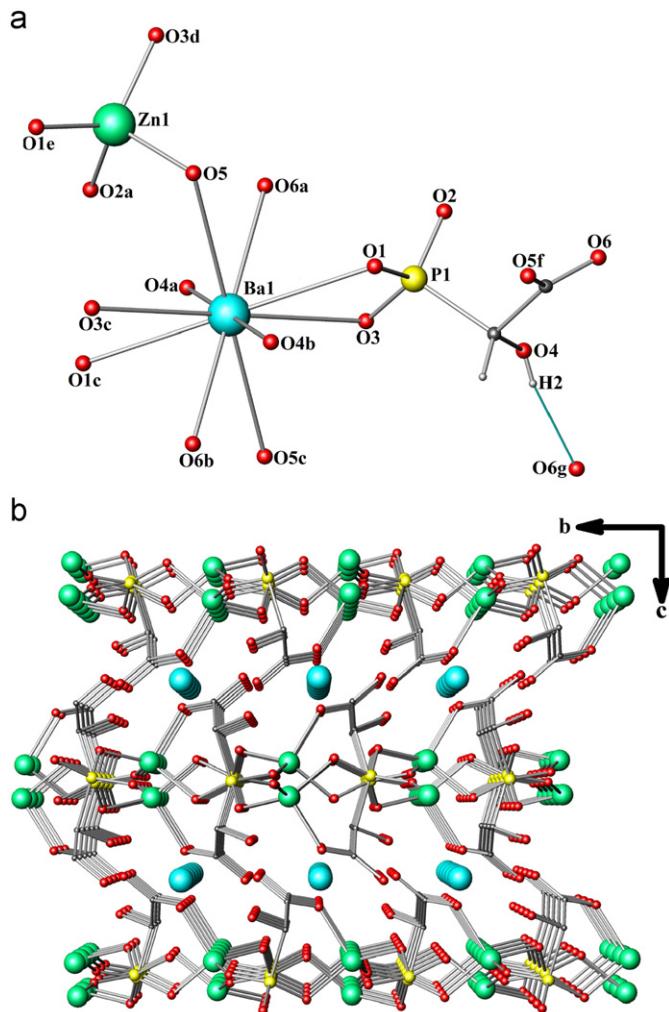
Table 3Hydrogen bond lengths (Å) and angles (deg.) for solid **1**.

D–H…A	D–H	H…A	D…A	D–H…A
O4–H2…O1 ^e	0.82(6)	2.21(6)	3.029(4)	174.4
O10–H4…O11 ^a	0.81(5)	1.91(5)	2.723(4)	180(6)
N2–H12…O4 ^h	0.89	2.05	2.862(4)	151.3
N2–H11…O7 ^g	0.89	1.95	2.766(4)	151.7
N2–H13…O9 ^f	0.89	1.95	2.766(4)	151.7

Symmetry codes: ^a $x+1, y, z$, ^e $x-1, y, z$, ^f $x, y+1, z$, ^h $-x+1, -y+1, -z+1$, ^g $x+1, y+1, z$.**a****b****Fig. 2.** Ball-stick views of coordinated environment of Zn ions (a) and 3D framework in **2**. Blue-green lines represent hydrogen bondings. Unrelated hydrogen atoms are omitted for clarity. Symmetry codes: $a1-x, -y, -z$; $b-x, -y, 1-z$; $c1-x, -y, -z$; $d-x, -y, -z$; $e-1+x, y, z$; $f-1+x, 1+y, z$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

those in **1** and the reported solids [26–30]. Another two L^{3-} groups interact with Zn3 through phosphonate oxygen atom (O7, O8). $[ZnO_5]$ and $[ZnO_6]$ polyhedra are bridged by 2-hydroxyphosphonoacetate with two known hexadentate modes (**Scheme 1b,c**), resulting in a 3D framework with 1D channel encapsulating piperazine cations through hydrogen bondings (**Table 4**). In addition, the hydroxyl group and coordinated water molecule interact with the framework through hydrogen bondings.


Single crystal X-ray diffraction reveals that **3** is a 3D framework with 1D 24-atom channels encapsulating 1,2-propanediamine cations (**Fig. 3**). Except for the 1,2-propanediamine, the structure is same to that of $[(C_5H_{14}N_2)_{0.5}Zn_5(HO_3PCH(OH)CO_2)_3 \cdot 2H_2O] \cdot 2H_2O$ [30].


In **4**, Zn1 is in a distorted $[ZnO_4]$ tetrahedral coordination geometry defined by four oxygen atoms from three L^{3-} groups (**Fig. 4**). It is worth to note that one L^{3-} group is chelated to Zn1 via phosphonate (O1e) and carboxylate (O5) groups to form a Zn–O–P–C–C–O ring. Such chelating mode for $[ZnO_4]$ tetrahedron has not been reported previously [27]. As a result, the bond angle of O1e–Zn1–O5 is only $98.45(8)^\circ$, which deviates from 109.47° for tetrahedral angle. The central Ba is coordinated by ten oxygen atoms from three pairs of L^{3-} groups. Beside Ba–O–C–O chelating rings, L^{3-} groups can also be chelated to Ba1 through two phosphonate oxygen atoms (O1/O3, O1c/O3c) into Ba–O–P–O rings. On the *ab* plane, $[ZnO_4]$ tetrahedron shares corners with $[PO_3C]$ tetrahedron to form a δ^3 hybrid layer. Ba ions lie between the layers and pack the layers into 3D structure through coordination bonds. In the structure, hydroxyl group provides a hydrogen atom to form hydrogen bonding with carboxylate group (O4…O6g, 2.743(3) Å). In addition, 2-hydroxylphosphonoacetate exhibits a new $\mu_6:\eta_1:\eta_2:\eta_2:\eta_1:\eta_1:\eta_2$ hexadentate mode and bridges three Zn along with three Ba ions (**Scheme 1d**).

Ba(II) ion in **5** is also coordinated by ten oxygen atoms from seven HL^{2-} groups (**Fig. 5(a)**). It is interesting that one HL^{2-}

Table 4Hydrogen bond lengths (Å) and angles (deg.) for solid **2**.

D–H…A	D–H	H…A	D…A	D–H…A
O4–H4…O11 ^f	0.75(4)	1.90(4)	2.651(3)	174(4)
O13–H5…O7 ^e	0.76(5)	1.99(5)	2.717(3)	159(5)
O13–H6…O12 ^e	0.81(10)	3.10(10)	2.905(4)	169(9)
N1–H7…O3	0.96(5)	1.71(5)	2.638(3)	160(4)
N1–H8…O1 ^e	0.89(4)	2.21(4)	3.068(3)	162(4)

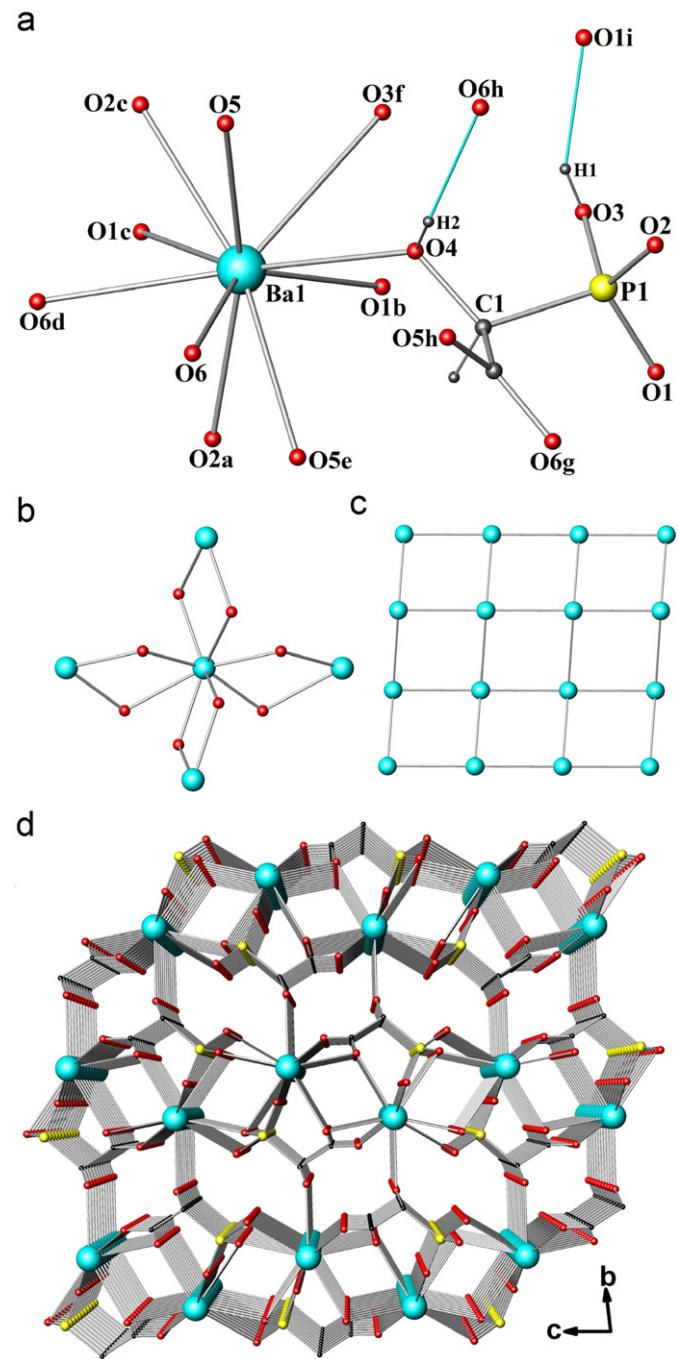
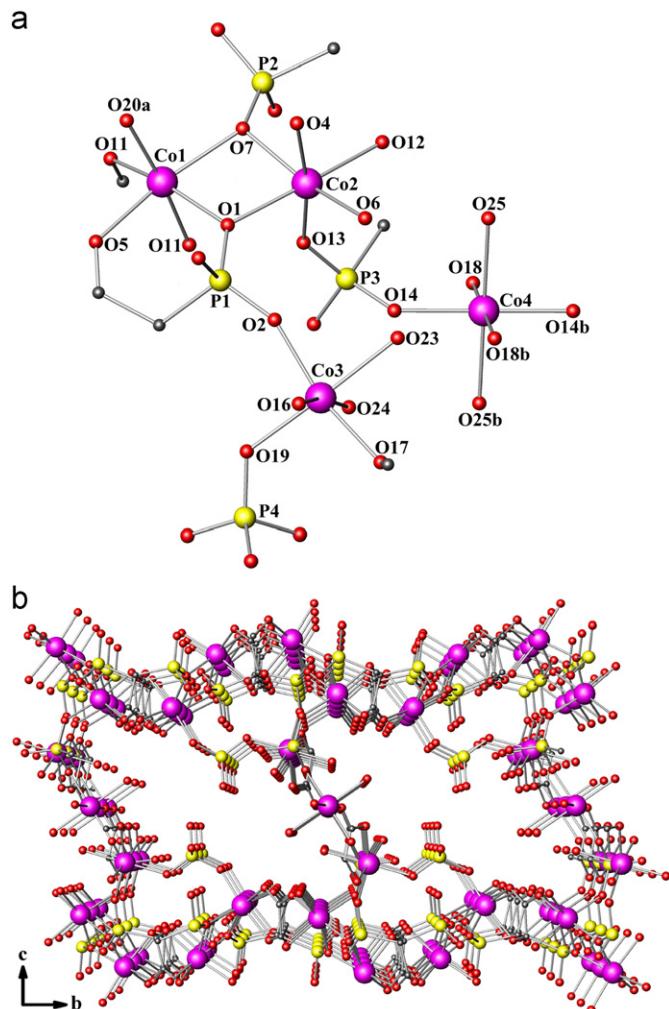

Symmetry codes: ^e $-1+x, y, z$, ^f $-1+x, 1+y, z$.**Fig. 3.** Ball-stick view of 3D framework in **3**. 1,2-Propanediamine cations are omitted for clarity.

Fig. 4. Ball-stick views of coordinated environment of Zn and Ba ions (a) and 3D framework (b) in 4. Blue-green line represents hydrogen bondings. Unrelated hydrogen atoms are omitted for clarity. Symmetry codes: $ax, 1/2-y, -1/2+z; b-x, -1/2+y, -1/2-z; c-x, -y, -1-z; d-1/2+x, 1/2-y, -1-z; e-1/2-x, -y, 1/2+z; f-1/2-x, -y, 1/2+z; g1/2+x, 1/2-y, -z$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)


group is chelated to Ba1 through two phosphonate oxygen atoms (O1c, O2c) along with one carboxylate oxygen atom (O6d), which has not been reported previously. Another HL^{2-} group is chelated to Ba1 through two carboxylate oxygen atoms (O5e, O6). The remaining five HL^{2-} groups interact with Ba1 through five oxygen atoms, including three phosphonate (O1b, O2a, O3f), one carboxylate (O5) and one hydroxyl (O4) oxygen atom. The interaction between neighboring Ba ions is through a pair of oxygen atoms (Fig. 5(b)). Thus, each Ba ion interacts with four surrounding Ba ions to form 4^4 Ba···Ba net (Fig. 5(c)). As shown in Fig. 5(d), these nets are further linked by 2-hydroxyphosphonoacetates with a new $\mu_6\eta_1\eta_2\eta_1\eta_1\eta_2\eta_2$ hexadentate mode to form 3D structure (Scheme 1e). In addition, there are two hydrogen bondings (O4···O6h, 2.853(5) Å; O3···O1, 2.560(5) Å) in the structure.

The asymmetric unit of **6** contains four Co(II) ions, three HL^{2-} groups, one HPO_4^{2-} , one NH_4^+ , three coordinated and two free water molecules (Fig. 6). The HPO_4^{2-} comes from H_3L solution which contains a small amount of H_3PO_4 . Co1–Co3 are in distorted $[Co_6]$ octahedral coordination geometries. HL^{2-} group can be chelated to Co1–Co3 via hydroxyl and carboxylate groups to form Co–O–C–C–O ring. As a result, bond angles of O10–Co1–

Fig. 5. Ball-stick views of coordinated environment of Ba ion (a), the interaction of Ba ions (b), Ba···Ba net (c) and 3D structure (d) in 5. Blue-green lines represent hydrogen bondings. Symmetry codes: $ax, -1+y, z; b-x, -y, -z; c1+x, -1+y, z; d1-x, -1-y, -1-z; e-1+x, y, z; f1-x, -y, -z; g-x, -y, -1-z; h1-x, -y, -1-z; i1+x, y, z$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

O11, O10–Co2–O11 and O16–Co3–O17 are 75.58(13), 76.84(13) and 75.64(14)°, respectively, which deviate from 90° for octahedral angle. Both Co1 and Co2 are also surrounded by a Co–O–P–C–O ring. The remaining four sites of $[Co(3)O_6]$ octahedron are occupied by the other HL^{2-} group, one HPO_4^{2-} and two coordinated water molecules. Different from those of Co1–Co3, Co4 is in a slightly distorted $[Co(4)O_6]$ octahedral coordination geometry defined by six oxygen atoms from two equivalent HL^{2-} groups and two equivalent water molecules. The HL^{2-} group is also chelated to Co4 via phosphonate (O14) and carboxylate (O18)

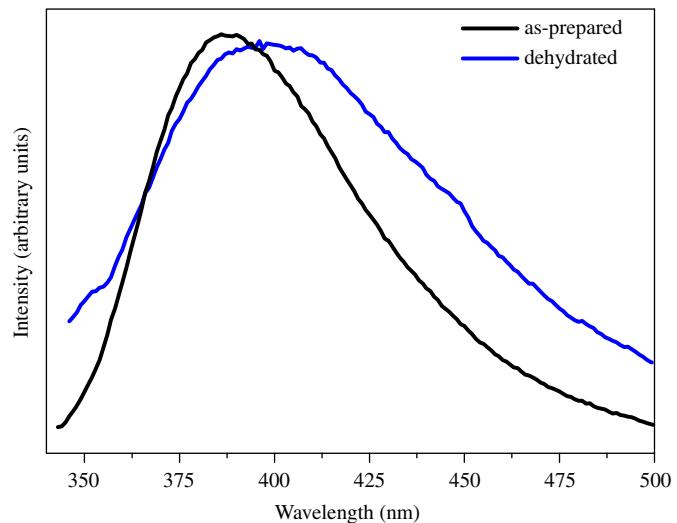


Fig. 6. Ball-stick views of coordinated environment of Co ions (a) and 3D structure (b) in **6**. Unrelated atoms are omitted for clarity. Symmetry codes: $a -x+1/2, y-1/2, -z+1/2$; $b -x, y+1, -z+1$.

groups into a Co–O–P–C–C–O ring. On the other hand, 2-hydroxyphosphonoacetates display a new $\mu_4:\eta_1:\eta_1:\eta_1:\eta_1$ pentadentate, a new $\mu_3:\eta_2:\eta_1:\eta_1:\eta_1$ tetradentate and a known $\mu_3:\eta_1:\eta_1:\eta_1:\eta_1:\eta_1$ pentadentate modes (Scheme 1f–h) [17–25]. And HPO₄²⁻ group serves as a bridge to link Co1 and Co3. Thus, the cross-linkage of [CoO₆] octahedra by HL²⁻ and HPO₄²⁻ groups is to form a complicated 3D framework with ellipsoid-like channels along *a* axis.

3.2. Thermal stability

TGA curve of **3** indicates a stage occurs from room temperature to 200 °C with 5.0% weight loss, corresponding to the loss of all water molecules (calculated 4.8%). Thereupon, a sharp stage appears from 300 °C due to the collapse of the framework. TGA curve of **6** indicates a stage occurs from 80 to 270 °C with 10.0% weight loss attributing the loss of all water molecules (calculated 10.3%). Furthermore, as-prepared **3** and **4** were heated at 250 and 300 °C for 2 h under air atmosphere, respectively, and cooled to room temperature. Both powder XRD patterns are in agreement with those of respective as-prepared solids. These results demonstrate that the structures of solids **3** and **4** behave thermally stable up to 250–300 °C under air atmosphere, respectively.

Fig. 7. Fluorescent emissions for as-prepared **3** ($\lambda_{\text{ex}}=328$ nm) and dehydrated **3** ($\lambda_{\text{ex}}=331$ nm).

3.3. Luminescent properties

No luminescent emissions for **1** and **4–6** can be detected under our experimental conditions. As-prepared **3** displays near UV emission with a peak band around 386 nm upon excitation at 328 nm (Fig. 7). Upon excitation at 258 nm, as-prepared **3** also displays near UV emission with a peak band around 389 nm. This is in accord with the excitation spectrum containing two peaks centered at 330 and 256 nm. And dehydrated **3** which has been heated at 250 °C for 2 h under air atmosphere and cooled to room temperature, displays purple light with a peak band around 396 nm. It is interesting that the peak emission of solid **3** displays a 10 nm red-shift after simply heat-treatment [45].

4. Conclusions

In summary, six new metal phosphonates with layered or 3D frameworks have been synthesized and fully characterized. As expected, 2-hydroxyphosphonoacetate displays five new coordination modes in these compounds. Beside common M–O–P–C–C–O and M–O–C–C–O chelating rings, 2-hydroxyphosphonoacetate can also be chelated to metal centers with two phosphonate oxygen atoms to form M–O–P–O ring, as well as with two phosphonate and one carboxylate oxygen atoms. It is worth to mention that there is a M–O–P–C–C–O chelating ring around [ZnO₄] tetrahedron. The frameworks of **3** and **4** behave thermally stable up to 250 and 300 °C under air atmosphere, respectively. And the emission of solid **3** exhibits a 10 nm red-shift after simply heat-treatment. Future efforts are focused on introducing other structure-directing agents and secondary ligands to explore new metal phosphonates with attractive structures and properties.

Acknowledgments

This research was supported by grants from the State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), the National Ministry of Science and Technology of China (2007CB815301), the National Science Foundation of China (21073192, 20733003 and 20801055).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2011.02.023.

References

- [1] A. Clearfield, Metal phosphonate chemistry, in: K.D. Karlin (Ed.), *Progress in Inorganic Chemistry*, vol. 47, Wiley, New York, 1998, pp. 371–511.
- [2] J.G. Mao, *Coord. Chem. Rev.* 251 (2007) 1493.
- [3] E. Matczak-Jon, V. Vienova-Adrabińska, *Coord. Chem. Rev.* 249 (2005) 2458.
- [4] N.G. Armatas, W. Ouellette, K. Whitenack, J. Pelcher, H. Liu, E. Romaine, C.J. O'connor, J. Zubieta, *Inorg. Chem.* 48 (2009) 8897.
- [5] R.M.P. Colodrero, A. Cabeza, P. Olivera-Pastor, A. Infantes-Molina, E. Barouda, K.D. Demadis, M.A.G. Aranda, *Chem. Eur. J.* 15 (2009) 6612.
- [6] J. Wu, Y.L. Song, E.P. Zhang, H.W. Hou, Y.T. Fan, Y. Zhu, *Chem. Eur. J.* 12 (2006) 5823.
- [7] Q. Yue, J. Yang, G.H. Li, G.D. Li, J.S. Chen, *Inorg. Chem.* 45 (2006) 4431.
- [8] X.G. Liu, S.S. Bao, Y.Z. Li, L.M. Zheng, *Inorg. Chem.* 47 (2008) 5525.
- [9] S. Konar, N. Bhuvanesh, A. Clearfield, *J. Am. Chem. Soc.* 128 (2006) 9604.
- [10] D. Cave, F.C. Coomer, E. Molinos, H.H. Klauss, P.T. Wood, *Angew. Chem. Int. Ed.* 45 (2006) 803.
- [11] T.H. Yang, Y. Liao, L.M. Zheng, R.E. Dinnebier, Y.H. Sua, Jing Mac, *Chem. Commun.* (2009) 3023.
- [12] H.A. Habib, B. Gil-Hernández, K. Abu-Shandi, J. Sanchiz, C. Janiak, *Polyhedron* 29 (2010) 2537.
- [13] M. Menelaou, M. Dakanali, C.P. Raptopoulou, C. Drouza, N. Lalioti, A. Salifoglou, *Polyhedron* 28 (2009) 3331.
- [14] S. Kunnas-Hiltunen, M. Matilainen, J.J. Vepsäläinen, M. Ahlgren, 28 (2009), pp. 200.
- [15] P.J. Byrne, D.S. Wragg, J.E. Warren, R.E. Morris, *Dalton Trans.* (2009) 795.
- [16] J. Gałczowska, P. Kafarski, H. Kozłowski, P. Młynarz, V.M. Nurchi, T. Pivetta, *Inorg. Chim. Acta* 362 (2009) 707.
- [17] R.M.P. Colodrero, P. Olivera-Pastor, A. Cabeza, M. Papadaki, K.D. Demadis, M.A.G. Aranda, *Inorg. Chem.* 49 (2010) 761.
- [18] S. Lodhia, A. Turner, M. Papadaki, K.D. Demadis, G.B. Hix, *Cryst. Growth Des.* 9 (2009) 1811.
- [19] K.D. Demadis, M. Papadaki, M.A.G. Aranda, A. Cabeza, P. Olivera-Pastor, Y. Sanakis, *Cryst. Growth Des.* 10 (2010) 357.
- [20] K.D. Demadis, M. Papadaki, R.G. Raptis, H. Zhao, *Chem. Mater.* 20 (2008) 4835.
- [21] Z.G. Sun, L.Y. Cui, Z.M. Liu, L. Meng, H. Chen, D.P. Dong, L.C. Zhang, Z.M. Zhu, W.S. You, *Inorg. Chem. Commun.* 9 (2006) 999.
- [22] J. Li, L. Meng, Z.G. Sun, L.Y. Cui, J. Zhang, Y.Y. Zhu, D.P. Dong, H. Chen, W.S. You, Z.M. Zhu, *Inorg. Chem. Commun.* 10 (2007) 535.
- [23] Z.G. Sun, H. Chen, Z.M. Liu, L.Y. Cui, Y.Y. Zhu, Y. Zhao, J. Zhang, W.S. You, Z.M. Zhu, *Inorg. Chem. Commun.* 10 (2007) 283.
- [24] Y.Y. Zhang, M.H. Zeng, Y. Qi, S.Y. Sang, Z.M. Liu, *Inorg. Chem. Commun.* 10 (2007) 33.
- [25] K.D. Demadis, M. Papadaki, R.G. Raptis, H. Zhao, *J. Solid State Chem.* 181 (2008) 679.
- [26] R.B. Fu, S.C. Xiang, H.S. Zhang, J.J. Zhang, X.T. Wu, *Cryst. Growth Des.* 5 (2005) 1795.
- [27] R.B. Fu, H.S. Zhang, L.S. Wang, S.M. Hu, Y.M. Li, X.H. Huang, X.T. Wu, *Eur. J. Inorg. Chem.* (2005) 3211.
- [28] Z.Z. Lai, R.B. Fu, S.M. Hu, X.T. Wu, *Eur. J. Inorg. Chem.* (2007) 5439.
- [29] R.B. Fu, S.M. Hu, X.T. Wu, *Dalton Trans.* (2009) 9843.
- [30] R.B. Fu, S.M. Hu, X.T. Wu, *Dalton Trans.* (2009) 9440.
- [31] G.M. Sheldrick, *SHELXT 97*, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [32] A.C. Chamayou, M.A. Neelakantan, S. Thalamuthu, C. Janiak, *Inorg. Chim. Acta* 365 (2011) 447.
- [33] F. Zhuge, B. Wu, L. Dong, J. Yang, C. Janiak, N. Tang, X.J. Yang, *Aust. J. Chem.* 63 (2010) 1358.
- [34] B. Gil-Hernández, H. Höppe, J.K. Vieth, J. Sanchiz, C. Janiak, *Chem. Commun.* 46 (2010) 8270.
- [35] B.M. Draskovic, G.A. Bogdanovic, M.A. Neelakantan, A.C. Chamayou, S. Thalamuthu, Y.S. Avadhut, J. Schmedt auf der Günne, S. Banerjee, C. Janiak, *Cryst. Growth Des.* 10 (2010) 1665.
- [36] F. Zhuge, B. Wu, J. Liang, J. Yang, Y. Liu, C. Jia, C. Janiak, N. Tang, X.J. Yang, *Inorg. Chem.* 48 (2009) 10249.
- [37] E. Redel, C. Röhr, C. Janiak, *Chem. Commun.* (2009) 2103.
- [38] E. Redel, M. Fiederle, C. Janiak, Z. Anorg. Allg. Chem. 635 (2009) 1139.
- [39] B. Wu, J. Liang, J. Yang, C. Jia, X.J. Yang, H. Zhang, N. Tang, C. Janiak, *Chem. Commun.* (2008) 1762.
- [40] B. Wu, X. Huang, Y. Xia, X.J. Yang, C. Janiak, *CrystEngComm* 9 (2007) 676.
- [41] T. Dorn, A.C. Chamayou, C. Janiak, *New J. Chem.* 30 (2006) 156.
- [42] T. Dorn, C. Janiak, K. Abu-Shandi, *CrystEngComm* 7 (2005) 633.
- [43] M.D. Ward, *Chem. Commun.* (2005) 5838.
- [44] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijnd, G.C. Verschoor, *J. Chem. Soc. Dalton Trans.* (1984) 1349.
- [45] Y.Q. Huang, B. Ding, H.B. Song, B. Zhao, P. Ren, P. Cheng, H.G. Wang, D.Z. Liao, S.P. Yan, *Chem. Commun.* (2006) 4906.